KKBIM Prpactice 4.2

$\overline{A M}$ is on a line of symmetry for $\triangle A B C$. Some lengths and angle measures are given. Find the other lengths and angle measures.

I know that \qquad is a line of symmetry. That means that $\Delta \mathrm{AMC}$ is a \qquad of Δ AMB. Since the two triangles are mirror images of each other, they are
\qquad
\qquad . Since the two smaller triangles are congruent, their \qquad parts are congruent. Therefore, since $\mathrm{m} \angle \mathrm{CAM}$ is 37°, then \qquad also measures 37°. Since $\mathrm{m} \angle \mathrm{CAM}$ is 37° and $\mathrm{m} \angle \mathrm{BAM}$ is also 37°, then $\mathrm{m} \angle \mathrm{CAB}$ is 74°.

I also know that the \qquad
\qquad states that the interior angle sum of a triangle is \qquad degrees. Since $\mathrm{m} \angle \mathrm{CAB}$ is 74°, that leaves \qquad degrees for the other two angles of $\triangle \mathrm{ABC}$ to share. Since $\angle \mathrm{ACM}$ and $\angle \mathrm{ABM}$ are congruent, they each have a measure of \qquad .

Again using the Triangle Sum Property, if $\mathrm{m} \angle \mathrm{CAM}$ is 37° and $\mathrm{m} \angle \mathrm{CMA}$ is 53°, then $\mathrm{m} \angle \mathrm{CMA}$ is
\qquad and so is $\mathrm{m} \angle \mathrm{BMA}$. That makes $\triangle \mathrm{AMC}$ and $\Delta \mathrm{AMB}$ \qquad triangles.

Since the two smaller triangles are congruent, their corresponding sides are also \qquad . Therefore, $\overline{C M} \cong \overline{M B}$. Since $\overline{C B}=6 \mathrm{~m}, \overline{C M}$ and $\overline{M B}$ both have to measure \qquad .

I can use the \qquad
\qquad to find the missing side lengths of \qquad
\qquad . Since I know the length of the \qquad of the small triangles, I will be looking for the length of the \qquad . The Pythagorean Theorem states: \qquad . Since I know a and b, I am looking for c.

$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \\
& \square^{2}+\square^{2}=\mathrm{c}^{2} \\
& \square+\square=\mathrm{c}^{2} \\
& \square=\mathrm{c}^{2} \\
& \sqrt{ }=\mathrm{c} \\
& \square=\mathrm{c}
\end{aligned}
$$

So $\overline{C A}=5 m$ and $\overline{B A}=5 m$.

