IKHM Practice 4.2

 \overline{AM} is on a line of symmetry for $\triangle ABC$. Some lengths and angle measures are given. Find the other lengths and angle measures.

I know that ________ is a line of symmetry. That means that Δ AMC is a ________ of Δ AMB. Since the two triangles are mirror images of each other, they are ________. Since the two smaller triangles are congruent, their _______ parts are congruent. Therefore, since m \angle CAM is 37°, then _______ also measures 37°. Since m \angle CAM is 37° and m \angle BAM is also 37°, then m \angle CAB is 74°. I also know that the _______ gerees. Since m \angle CAB is 74°, that leaves _______ degrees for the other two angles of Δ ABC to share. Since \angle ACM and \angle ABM are congruent, they each have a measure of ______.

Again using the Triangle Sum Property, if m \angle CAM is 37° and m \angle CMA is 53°, then m \angle CMA is ______ and so is m \angle BMA. That makes \triangle AMC and \triangle AMB _______ triangles. Since the two smaller triangles are congruent, their corresponding sides are also ______. Therefore, $\overline{CM} \cong \overline{MB}$. Since $\overline{CB} = 6$ m, \overline{CM} and \overline{MB} both have to measure _____.

I can use the	to find t	he missing side
lengths of	Since I know the length of the	
of the small triangles, I will be looking for the length of the		. The Pythagorean
Theorem states:	Since I know a and b, I am looking for c.	
$a^2 + b^2 = c^2$		
$\Box^2 + \Box^2 = c^2$		
$\Box + \Box = c^2$		
$\Box = c^{2}$ $\sqrt{=} c$ $\Box = c$		
So $\overline{CA} = 5m$ and $\overline{BA} = 5m$.		