B. 1. Explain why each of the following statements is true.
a. $2^{3} \times 3^{3}=6^{3}$
b. $5^{3} \times 6^{3}=30^{3}$
c. $10^{4} \times 4^{4}=40^{4}$
2. Give another example that fits the pattern in part (1).
3. Complete the following equation to show how you can find the base and exponent of the product when you multiply two powers with the same exponent. Explain your reasoning.

$$
a^{m} \times b^{m}=?
$$

When multiplying \qquad with different \qquad ,
and the same \qquad , the resulting \qquad is the
\qquad and the \qquad remains
\qquad of the
the same.

For example, when multiplying \qquad by \qquad , the \qquad
becomes \qquad and the \qquad remains \qquad .

Explain in your own words why this rule works. Then give an example that you create to illustrate the rule.
C. 1. Explain why each of the following statements is true.
a. $4^{2}=\left(2^{2}\right)^{2}=2^{4}$
b. $9^{2}=\left(3^{2}\right)^{2}=3^{4}$
c. $125^{2}=\left(5^{3}\right)^{2}=5^{6}$
2. Give another example that fits the pattern in part (1).
3. Complete the following equation to show how you can find the base and exponent when a power is raised to a power. Explain.

$$
\left(a^{m}\right)^{n}=?
$$

When multiplying an \qquad raised to a \qquad _,
the \qquad remains the \qquad and the
\qquad is the \qquad of the
\qquad .

Explain in your own words why this rule works. Then give an example that you create to illustrate the rule.

